On Some Prime Graphs

Dr. S. MEENA
Associate Professor, Govt, Arts \& Science College, Chidambaram- 608 102, India.
E-mail: meenasaravana14@gmail.com, Mobile:9976990777
P. KAVITHA
Assistant Professor, S.R.M University, Chennai- 603 203, India
E-mail: kavithavps@gmail.com, Mobile:9943505125

Abstract

: A graph $G=(V, E)$ with n vertices is said to admit prime labeling if its vertices can be labeled with distinct positive integers not exceeding n such that the label of each pair of adjacent vertices are relatively prime. A graph G which admits prime labeling is called a prime graph. And a graph G is said to be a strongly prime graph if for any vertex v of G there exists a prime labeling f satisfying $f(v)=1$. In this paper we investigate prime labeling for some graphs related to H - graph, ladder graph, comb graph and also we prove that comb graph is a strongly prime graph.

Keywords: Prime Labeling, Prime Graph, Strongly Prime Graph, H -Graph, Ladder Graph, Comb Graph .

1. INTRODUCTION:

In this paper, we consider only simple, finite, undirected and non trivial graph $G=(V(G), E(G))$ with the vertex set $\mathrm{V}(\mathrm{G})$ and the edge set $\mathrm{E}(\mathrm{G})$. The set of vertices adjacent to a vertex u of G is denoted by $N(u)$. For notations and terminology we refer to Bondy and Murthy [1].
Two integers a and b are said to be relatively prime if their greatest common divisor is 1 . Relatively prime numbers play an important role in both analytic and algebraic number theory. The notion of a prime labeling was introduced by Roger Entringer and was discussed in a paper by Tout.A (1982 P 365-368) [7]. Many researchers have studied prime graph. For example Fu.H (1994 P 181186) [3] have proved that path P_{n} on n vertices is a prime graph. Deresky.T (1991 P 359-369) [2] have proved that the C_{n} on n vertices is a prime graph. Lee.S (1998 P 59-67) [5] have proved that wheel W_{n} is a prime graph iff n is even. Around 1980 Roger Etringer conjectured that all trees having prime labeling which is not settled till today.
In [8] S.K.Vaidya and K.K.Kanani have proved the Prime Labeling For Some Cycle Related Graph. In [6] S.Meena and K.Vaithiligam have proved the Prime Labeling For Some Helm Related Graph (2013 P 1075-1085).
In [9] S.K.Vaidya and Udayan M.Prajapati have introduced Strongly prime graph and has proved the C_{n}, P_{n} and $K_{1, n}$ are Strongly prime graphs and W_{n} is a Strongly prime graph for every even integer $n \geq 4$, in Some New Results On Prime Graph (2012 P 99-104). In [10] R.Vasuki and A.Nagarajan have proved Some Results On Super Mean Graphs Vol. 3 (2009), 82-96.For latest Dynamic Survey On Graph Labeling we refer to [4] (Gallian .J.A., 2009). Vast amount of literature is available on different types of graph
labeling more than 1000 research papers have been published so far in last four decades.

Definition 1.1:

Let $G=(V(G), E(G))$ be a graph with p vertices. A bijection $f: \mathrm{V}(G) \rightarrow\{1,2, \ldots \ldots p\}$ is called a prime labeling if for each edge $e=u v, \operatorname{gcd}\{f(u), f(v)\}=1$. A graph which admits prime labeling is called a prime graph.

Definition 1.2:

A graph G is said to be a strongly prime graph if for any vertex v of G there exists a prime labeling f satisfying $f(v)=1$.

Definition 1.3:

The H graph of a path P_{n} is the graph obtained from two copies of P_{n} with vertices $u_{1}, u_{2}, \ldots u_{n}$ and $v_{1}, v_{2}, \ldots v_{n}$ by joining the vertices $u_{\frac{n+1}{2}}$ and $v_{\frac{n+1}{2}}$ if n is odd and the vertices $u_{\frac{n}{2}+1}$ and $v_{\frac{n}{2}}$ if n is even.

Definition 1.4:

The corona of a graph G on p vertices $v_{1}, v_{2}, \ldots v_{p}$ is the graph obtained from G by adding p new vertices $u_{1}, u_{2}, \ldots u_{p}$ and the new edges $u_{i} v_{i}$ for $1 \leq i \leq p$ then it is denoted by $G \square K_{1}$. And $G+K_{1}$ is a graph obtained from G by adding only one new vertex v_{0} and join every vertices of G with v_{0}, then the new edges are $v_{0} u_{i}, v_{0} v_{i}$ for $1 \leq i \leq n$.

Definition 1.5:

The product $P_{2} \times P_{n}$ is called a ladder and it is denoted by L_{n}.

Definition 1.6:

The graph $P_{n} \square K_{1}$ is called a comb $C_{b n}$. In this paper we investigate prime labeling for some graphs related to H - graph, ladder graph, comb graph and also we prove that comb graph is a strongly prime graph.

2. Prime Labeling of Some Graphs
 \section*{Theorem 2.1:}

The H-graph of path P_{n} is a prime graph.

Proof:

Let H_{n} be the H-graph with Vertex set is

$$
\left\{u_{1}, u_{2}, \ldots u_{n}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}\right\}
$$

The edge set is $E\left(H_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{\frac{n+1}{2}} \frac{v_{n+1}^{2}}{2}\right.$

$$
\text { if } \mathrm{n} \text { is odd }\} \text { (or) }\left\{u_{\frac{n}{2}}+1 \frac{v^{n}}{} \text { if } \mathrm{n} \text { is even }\right\} .
$$

Here $\left|V\left(H_{n}\right)\right|=2 n$
Define a labeling $f: V\left(H_{n}\right) \rightarrow\{1,2, \ldots 2 \mathrm{n}\}$ by considering the following cases:
$\begin{array}{ll}\text { Case (i): When } n \text { is odd } & \\ f\left(u_{i}\right)=i+1 & \text { for } 1 \leq i \leq n, \\ f\left(v_{i}\right)=n+i+1 & \text { for } 1 \leq i<\frac{n+1}{2}, \\ f\left(v_{i}\right)=n+i & \text { for } \frac{n+1}{2} \leq i \leq n,\end{array}$
$f\left(v_{\frac{n+1}{2}}\right)=1$,
here $\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=1 \quad$ for $1 \leq i \leq n-1$,

$$
\begin{array}{ll}
\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i+1}\right)\right)=1 & \text { for } 1 \leq i<\frac{n-1}{2} \\
\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i+1}\right)\right)=1 & \text { for } \frac{n+1}{2}<i \leq n
\end{array}
$$

Since they are consecutive integers.
$\operatorname{gcd}\left(f\left(v_{\frac{n-1}{2}}\right), f\left(v_{\frac{n+1}{2}}\right)\right)=\operatorname{gcd}\left(f\left(v_{\frac{n-1}{2}}\right), 1\right)=1$,
$\operatorname{gcd}\left(f\left(v_{\frac{n+1}{2}}\right), f\left(v_{\frac{n+3}{2}}\right)\right)=\operatorname{gcd}\left(1, f\left(v_{\frac{n+3}{2}}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(u_{\frac{n+1}{2}}\right), f\left(v_{\frac{n+1}{2}}\right)\right)=\operatorname{gcd}\left(f\left(u_{\frac{n+1}{2}}\right), 1\right)=1$,
Clearly vertex label are distinct.
Thus labeling defined above gives a prime labeling for a graph $H_{n}($ for nisodd $)$.

Figure 1: Prime labeling of H_{7}

Case (ii): When n is even
$f\left(u_{i}\right)=i+1$
for $1 \leq i \leq n$,
$f\left(v_{i}\right)=n+i+1$

$$
\text { for } 1 \leq i<\frac{n}{2}
$$

$f\left(v_{i}\right)=n+i$ $f\left(v_{\frac{n}{2}}\right)=1$,
for $\frac{n}{2}<i \leq n$,
Now $\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=1$
for $1 \leq i \leq n-1$,
$\operatorname{gcd}\left(f\left(\mathrm{v}_{\mathrm{i}}\right), f\left(\mathrm{v}_{i+1}\right)\right)=1$

Since they are consecutive integers.

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(v_{\frac{n}{2}}\right), f\left(v_{\frac{n}{2}-1}\right)\right)=\operatorname{gcd}\left(1, f\left(v_{\frac{n}{2}-1}\right)\right)=1 \\
& \operatorname{gcd}\left(f\left(v_{\frac{n}{2}}\right), f\left(v_{\frac{n}{2}+1}\right)\right)=\operatorname{gcd}\left(1, f\left(v_{\frac{n}{2}+1}\right)\right)=1 \\
& \operatorname{gcd}\left(f\left(v_{\frac{n}{2}}\right), f\left(u_{\frac{n}{2}+1}\right)\right)=\operatorname{gcd}\left(1, f\left(u_{\frac{n}{2}+1}\right)\right)=1 \\
& \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=1 \quad \text { for } \frac{n}{2}<i \leq n
\end{aligned}
$$

Since it is a consecutive integer.
Clearly vertex label are distinct. Thus labeling defined above gives a prime labeling for a graph H_{n} (fornis even).
Thus in both the cases f admits prime labeling. Hence H_{n} becomes a prime graph.

Figure 2: Prime labeling of H_{10}

Theorem 2.2:

The graph $G \square K_{1}$ is a prime graph where G is a H-graph with n vertices.

Proof:

Let G be the graph with vertices $u_{1}, u_{2}, \ldots u_{n}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}$. Let $u_{1}, u_{2}, \ldots u_{n}$ and $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}$ be the corresponding new vertices, join $u_{i} u_{i}$ and $v_{i} v_{i}$ in G. we get the graph G_{1} ie., $G \square K_{1}$.

Now the vertex set of G_{1} is
$\left\{u_{1}, u_{2}, \ldots u_{n}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots u_{n}^{\prime}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \ldots \mathrm{v}_{n}^{\prime}\right\}$ and the edge set $\mathrm{E}\left(G_{1}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} u_{i}^{\prime}, v_{i} v_{i}^{\prime} / 1 \leq i \leq n\right\}$

$$
\begin{align*}
& \cup\left\{u_{\frac{n+1}{2} \frac{n+1}{2}} / \text { if } n \text { is odd }\right\} \tag{or}\\
& \cup\left\{u_{\frac{n}{2}+1} v_{\frac{n}{2}} / \text { if } n \text { is even }\right\}
\end{align*}
$$

Here $\left|V\left(G_{1}\right)\right|=4 n$
Define a labeling $f: \mathrm{V}\left(G_{1}\right) \rightarrow\{1,2, \ldots 4 \mathrm{n}\}$ by considering the following cases:
Case (i): When n is odd.

$$
\begin{array}{ll}
f\left(u_{i}\right)=2 i+1 & \text { for } 1 \leq i \leq n, \\
f\left(u_{i}^{\prime}\right)=2 i & \text { for } 1 \leq i \leq n, \\
f\left(v_{i}\right)=2 n+2 i+1 & \text { for } 1 \leq i<\frac{n+1}{2}, \\
f\left(v_{i}\right)=2 n+2 i-1 & \text { for } \frac{n+1}{2}<i \leq n, \\
f\left(v_{\frac{n+1}{2}}\right)=1, & \\
f\left(v_{i}^{\prime}\right)=2 n+2 i & \text { for } 1 \leq i \leq n, \\
\operatorname{here} \operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}(2 i+1,2 i+3)=1 \text { for } 1 \leq i \leq n-1,
\end{array}
$$

$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i+1}\right)\right)=\operatorname{gcd}(2 n+2 i+1,2 n+2 i+3)=1$
for $1 \leq i<\frac{n-1}{2}$,
$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i+1}\right)\right)=\operatorname{gcd}(2 n+2 i-1,2 n+2 i+1)=1$

$$
\text { for } \frac{n+1}{2}<i<n-1,
$$

Since they are all consecutive odd numbers.
$\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i}^{\prime}\right)\right)=\operatorname{gcd}(2 i+1,2 i)=1 \quad$ for $1 \leq i \leq n$, $\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i}^{\prime}\right)\right)=\operatorname{gcd}(2 \mathrm{n}+2 \mathrm{i}+1,2 \mathrm{n}+2 \mathrm{i})=1$
for $1 \leq i \leq n-1$,
Since they are consecutive integers.
$\operatorname{gcd}\left(f\left(v_{\frac{n+1}{2}}\right), f\left(v_{\frac{n+1}{2}-1}\right)\right)=\operatorname{gcd}\left(1, f\left(v_{\frac{n+1}{2}-1}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(v_{\frac{n+1}{2}}\right), f\left(v_{\frac{n+1}{2}+1}\right)\right)=\operatorname{gcd}\left(1, f\left(v_{\frac{n+1}{2}+1}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(v_{\frac{n+1}{2}}\right), f\left(\mathrm{u}_{\frac{n+1}{2}}\right)\right)=\operatorname{gcd}\left(1, f\left(\mathrm{u}_{\frac{n+1}{2}}\right)\right)=1$,
Clearly vertex labels are distinct.
Thus labeling defined above gives a prime labeling for a graph $G_{1}($ for n is odd $)$.

Figure 3: Prime labeling of $G \square K_{1}$ where $G=H_{7}$

Case (ii): When n is even.
If n is even then we join the vertices $u_{\frac{n}{2}+1}$ and $v_{\frac{n}{2}}$. Therefore in the above labeling f defined in case (i) we have to change only these labels $f\left(v_{\frac{n}{2}}\right)=1, f\left(v_{i}\right)=2 n+2 i+1$ for $1 \leq i<\frac{n}{2}, f\left(v_{i}\right)=2 n+2 i-1$ for $\frac{n}{2}<i \leq n$.
Hence $\operatorname{gcd}\left(f\left(v_{\frac{n}{2}}\right), f\left(\mathrm{u}_{\frac{n}{2}+1}\right)\right)=\operatorname{gcd}\left(1, f\left(\mathrm{u}_{\frac{n}{2}+1}\right)\right)=1$, $\operatorname{gcd}\left(f\left(v_{\frac{n}{2}}\right), f\left(v_{\frac{n}{2}+1}\right)\right)=\operatorname{gcd}\left(1, f\left(v_{\frac{n}{2}+1}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(v_{\frac{n}{2}}\right), f\left(\mathrm{v}_{\frac{n}{2}-1}\right)\right)=\operatorname{gcd}\left(1, f\left(\mathrm{v}_{\frac{n}{2}-1}\right)\right)=1$,
Now clearly vertex labels are distinct.
Thus labeling defined above gives a prime labeling for a graph G_{1} (for nisodd). Thus $G \square K_{1}$ is a prime graph.

Figure 4: Prime labeling of $G \square K_{1}$ where $G=H_{6}$

Theorem 2.3:

The graph obtained by identifying the central vertex of $K_{1,2}$ at each pendent vertex of a comb $C_{b n}$ is a prime graph.

Proof:

Let P_{n} be the path $u_{1}, u_{2}, \ldots u_{n}$. Let v_{i} be a vertex adjacent to $u_{i}, 1 \leq i \leq n$. The resultant graph is comb $C_{b n}$. Let
x_{i}, w_{i}, y_{i} be the vertices of i 'th copy of $K_{1,2}$ with w_{i} is the central vertex. Identify the vertex w_{i} with $v_{i}, 1 \leq i \leq n$. We get the graph G whose vertex set is

$$
\left\{u_{1}, u_{2}, \ldots u_{n}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{n}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{n}\right\}
$$

The edge set
$=\left\{u_{i} u_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}, v_{i} x_{i}, v_{i} y_{i} / 1 \leq i \leq n\right\}$
Here $|V(G)|=4 n$
Define a function $f: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots 4 \mathrm{n}\}$ by

$$
\begin{array}{ll}
f\left(\mathrm{u}_{i}\right)=4 i-3 & \text { for } 1 \leq i \leq n, \\
f\left(v_{i}\right)=4 i-1 & \text { for } 1 \leq i \leq n, \\
f\left(\mathrm{x}_{i}\right)=4 i-2 & \text { for } 1 \leq i \leq n, \\
f\left(\mathrm{y}_{i}\right)=4 i & \text { for } 1 \leq i \leq n,
\end{array}
$$

Here
$\operatorname{gcd}\left(f\left(\mathrm{u}_{i}\right), f\left(\mathrm{u}_{i+1}\right)\right)=\operatorname{gcd}(4 \mathrm{i}-3,4 \mathrm{i}+1)=1$ for $1 \leq i \leq n-1$,
as these two numbers are odd and their difference is 4 $\operatorname{gcd}\left(f\left(\mathrm{u}_{i}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}(4 i-3,4 i-1)=1$, as these two numbers are consecutive odd numbers.
$\operatorname{gcd}\left(f\left(\mathrm{x}_{i}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}(4 i-2,4 i-1)=1$ and
$\operatorname{gcd}\left(f\left(\mathrm{y}_{i}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}(4 i, 4 i-1)=1$
Since both are consecutive positive integers.

Clearly vertex label are distinct. Thus labeling define above gives a function f is a prime labeling of G. Thus G is a prime graph.

Figure 5: Prime labeling of Comb identifying the central vertex of $K_{1,2}$ at each pendent vertex

Theorem 2.4:

The graph $G \square K_{1}$ is a prime graph where G is a Ladder graph with n vertices.

Proof:

Let $u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}$ be the two paths of equal length, join u_{i} and $v_{i}, 1 \leq i \leq n$. The resultant graph is Ladder graph G. Add two new vertices x_{i}, y_{i} and join these vertices with u_{i} and v_{i} respectively, $1 \leq i \leq n$. we get the graph G_{1} ie., $G \square K_{1}$.
Now the vertex set is

$$
\left\{u_{1}, u_{2}, \ldots u_{n}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}, x_{1}, x_{2}, \ldots x_{n}, y_{1}, y_{2}, \ldots y_{n}\right\}
$$

The edge set is
$E\left(G_{1}\right)=\left\{u_{i} u_{i+1}, \mathrm{v}_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}, \mathrm{v}_{i} y_{i}, \mathrm{u}_{i} x_{i} / 1 \leq i \leq n\right\}$ here $\left|V\left(G_{1}\right)\right|=4 n$
Define a function $f: \mathrm{V}\left(G_{1}\right) \rightarrow\{1,2, \ldots 4 \mathrm{n}\}$ by

$$
\begin{array}{ll}
f\left(\mathrm{u}_{i}\right)=4 i-1 & \text { for } 1 \leq i \leq n \\
f\left(v_{i}\right)=4 i-3 & \text { for } 1 \leq i \leq n \\
f\left(\mathrm{x}_{i}\right)=4 i & \text { for } 1 \leq i \leq n \\
f\left(\mathrm{y}_{i}\right)=4 i-2 & \text { for } 1 \leq i \leq n
\end{array}
$$

Here $\operatorname{gcd}\left(f\left(\mathrm{u}_{i}\right),\left(\mathrm{u}_{i+1}\right)\right)=\operatorname{gcd}(4 \mathrm{i}-1,4 \mathrm{i}+3)=1$ for $1 \leq i \leq n-1$, as these two numbers are odd and their difference is 4 .
$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i+1}\right)\right)=\operatorname{gcd}(4 \mathrm{i}-3,4 \mathrm{i}+1)=1$,
$\operatorname{gcd}\left(f\left(\mathrm{u}_{i}\right), f\left(\mathrm{v}_{i}\right)\right)=\operatorname{gcd}(4 i-1,4 i-3)=1$,
Since both are consecutive odd numbers.
$\operatorname{gcd}\left(f\left(\mathrm{u}_{i}\right), f\left(\mathrm{x}_{i}\right)\right)=\operatorname{gcd}(4 i-1,4 i)=1$ and
$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{y}_{i}\right)\right)=\operatorname{gcd}(4 i-3,4 i-2)=1$,
Since both are consecutive numbers.
Clearly vertex labels are distinct.
Thus a labeling defined above gives a prime labeling for a graph G_{1}. Thus $G \square K_{1}$ is a prime graph.

Figure 6: Prime labeling of $G \square K_{1}$ where $G=L_{8}$

Theorem 2.5:

The graph $G+K_{1}$ is a prime graph where G is a H-graph with n vertices.
Proof:
Let G be the graph with vertices $u_{1}, u_{2}, \ldots u_{n}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}$. Let v_{0} be the new vertex, join $v_{0} u_{i}$ and $v_{0} v_{i}$ where $1 \leq i \leq n$ in G. we get the graph G_{1} ie., $G+K_{1}$.
Now the vertex set of G_{1} is $\left\{u_{1}, u_{2}, \ldots u_{n}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}, \mathrm{v}_{0}\right\}$.
The edge set
$E\left(G_{1}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{\mathrm{v}_{0} u_{i}, v_{0} v_{i} / 1 \leq i \leq n-1\right\}$

$$
\begin{aligned}
& \cup\left\{u_{\frac{n+1}{2} \frac{n+1}{2}} / \text { if } n \text { is odd }\right\} \\
& \cup\left\{u_{\frac{n}{2}+1} v_{\frac{n}{2}} / \text { if } n \text { is even }\right\}
\end{aligned}
$$

here $V\left|G_{1}\right|=2 n+1$.
Define a labeling $f: V\left(G_{1}\right) \rightarrow\{1,2,3, \ldots 2 n+1\}$ by considering the following cases:
Case (i): When n is odd.
$f\left(v_{0}\right)=1$,
$f\left(v_{i}\right)=\frac{n+1}{2}+i+1 \quad$ for $1 \leq i \leq n$,
$f\left(\mathrm{u}_{i}\right)=\frac{3 n+1}{2}+i+1 \quad$ for $1 \leq i \leq \frac{n+1}{2}$,
$f\left(\mathrm{u}_{i}\right)=i-\left(\frac{n-3}{2}\right) \quad$ for $\frac{n+1}{2} \leq i \leq n$,
here $\operatorname{gcd}\left(f\left(v_{0}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}\left(1, f\left(v_{i}\right)\right)=1$, $\operatorname{gcd}\left(f\left(\mathrm{v}_{0}\right), f\left(\mathrm{u}_{i}\right)\right)=\operatorname{gcd}\left(1, f\left(\mathrm{u}_{i}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i+1}\right)\right)=\operatorname{gcd}\left(\frac{n+1}{2}+i+1, \frac{n+1}{2}+i+2\right)=1$ for $1 \leq i \leq n-1$,
$\operatorname{gcd}\left(f\left(\mathrm{u}_{i}\right), f\left(\mathrm{u}_{i+1}\right)\right)=\operatorname{gcd}\left(\frac{3 n+1}{2}+i+1, \frac{3 n+1}{2}+i+2\right)=1$

$$
\begin{array}{r}
\text { for } 1 \leq i \leq\left(\frac{n+1}{2}\right)-2, \\
\operatorname{gcd}\left(f\left(\mathrm{u}_{i}\right), f\left(\mathrm{u}_{i+1}\right)\right)=\operatorname{gcd}\left(i-\left(\frac{n-3}{2}\right), i-\left(\frac{n-3}{2}\right)+1\right)=1 \\
\text { for } \frac{n+1}{2} \leq i \leq n-1,
\end{array}
$$

Since these are all consecutive numbers.
and $\operatorname{gcd}\left(f\left(\mathrm{u}_{\frac{n+1}{2}}\right), f\left(\mathrm{v}_{\frac{n+1}{2}}\right)\right)=\operatorname{gcd}\left(2, f\left(\mathrm{v}_{\frac{n+1}{2}}\right)\right)=1$,
since $f\left(\mathbf{v}_{\frac{n+1}{2}}\right)$ is odd.
Clearly vertex labels are distinct.
Thus the labeling defined above gives the prime labeling for a graph $G_{1}($ for nisodd $)$.

Figure 7: Prime labeling of $G+K_{1}$ where $G=H_{9}$
Case (ii): When n is even.
$f\left(v_{0}\right)=1$,
$f\left(\mathrm{u}_{i}\right)=\frac{3 n}{2}+i+1$
for $1 \leq i<\frac{n}{2}+1$,
$f\left(\mathrm{u}_{i}\right)=i-\left(\frac{n-2}{2}\right)$
for $\frac{n}{2}+1 \leq i \leq n$,
$f\left(v_{i}\right)=\frac{n}{2}+i+1$
for $1 \leq i \leq n$,
Similar to case(i) here also $\operatorname{gcd}\left(f\left(\mathrm{u}_{i}\right), f\left(\mathrm{u}_{i+1}\right)\right)=1$, $\operatorname{gcd}\left(f\left(\mathrm{v}_{\mathrm{i}}\right), f\left(\mathrm{v}_{i+1}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(\mathrm{v}_{0}\right), f\left(\mathrm{u}_{i}\right)\right)=1, \operatorname{gcd}\left(f\left(\mathrm{v}_{0}\right), f\left(\mathrm{v}_{i}\right)\right)=1$ and $\operatorname{gcd}\left(f\left(\mathrm{u}_{\frac{n}{2}+1}\right), f\left(v_{\frac{n}{2}}\right)\right)=1$.
Thus $G+K_{1}$ is a prime graph.

Figure 8: Prime labeling of $G+K_{1}$ where $G=H_{10}$

3. STRONGLY PRIME GRAPHS

Theorem 3.1:

The Comb graph $C_{b n}$ is a strongly prime graph.

Proof:

Let $C_{b n}$ be the Comb graph with vertex set
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots v_{n}^{\prime}\right\}$.

Let $E\left(C_{b n}\right)$ be the edge set of the comb graph is
$E\left(C_{b n}\right)=\left\{v_{i} v_{i}^{\prime} / 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\}$.
Here $V\left|C_{b n}\right|=2 n$, where n is a positive integer.

If v is any arbitrary vertex of $C_{b n}$ then we have the following possibilities.

Case (i): When v is of degree 2,3.
If $v=v_{j}$ for some $j \in\{1,2,3, \ldots n\}$ then the function $f: V\left(C_{b n}\right) \rightarrow\{1,2,3, \ldots 2 n\}$ defined by
$f\left(v_{i}\right)= \begin{cases}2 n+2 i-2 j+1 & \text { if } i=1,2, \ldots j-1 ; \\ 2 i-2 j+1 & \text { if } i=j+1, j+2, \ldots n,\end{cases}$
$f\left(v_{j}\right)=1$,
and $f\left(v_{i}^{\prime}\right)= \begin{cases}2 n+2 i-2 j+2 & \text { if } i=1,2, \ldots j-1 ; \\ 2 i-2 j+2 & \text { if } i=j+1, j+2, \ldots n,\end{cases}$
$f\left(v_{j}^{\prime}\right)=2$.
$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i+1}\right)\right)=\operatorname{gcd}(2 n+2 i-2 j+1,2 n+2 i-2 j+3)=1$ for $1 \leq i \leq j-2$,

$$
\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i+1}\right)\right)=\operatorname{gcd}(2 i-2 j+1,2 i-2 j+3)=1
$$

$$
\text { for } 1 \leq i \leq n-1 \text {, }
$$

Since they are all consecutive odd numbers. $\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i}^{\prime}\right)\right)=\operatorname{gcd}(2 n+2 i-2 j+1,2 n+2 i-2 j+2)=1$
for $1 \leq i \leq j-1$,
$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i}^{\prime}\right)\right)=\operatorname{gcd}(2 i-2 j+1,2 i-2 j+2)=1$
for $1 \leq i \leq n$.
Since they are consecutive integers.
Clearly vertex label are distinct.
Thus $C_{b n}$ is a prime labeling with $f(v)=f\left(v_{j}\right)=1$. Thus f admits prime labeling as well as it is possible to assign label 1 to any arbitrary vertex of degree 2,3 in $C_{b n}$.

Figure 9: Strongly prime labeling of $\operatorname{Comb} C_{b 7}\left(v=v_{5}\right)$

Case (ii): When v is of degree 1.

Let $v=v_{j}^{\prime}$ for some $j \in\{1,2,3, \ldots n\}$. let f_{2} be the labeling obtained from f in case (i) by interchanging the labels $f\left(v_{j}\right)$ and $f\left(v_{j}^{\prime}\right)$ and for all other remaining vertices $f_{2}(v)=f(v)$.Then the resulting labeling f_{2} is a prime labeling as well as it is possible to assign label 1 to any arbitrary vertex of $C_{b n}$. Thus from all the cases described above $C_{b n}$ is a strongly prime graph.

Figure 10: Strongly prime labeling of $\operatorname{Comb} C_{b 7}\left(v=v_{5}^{\prime}\right)$

4. CONCLUDING REMARKS

The prime numbers and their behavior are of great importance as prime numbers are scattered and there are arbitrarily large gaps in the sequence of prime numbers. If these characteristics are studied in the frame work of graph theory then it is more challenging and exciting as well. Here we investigate several results on prime graphs and we prove that comb graph is a strongly prime graph.

REFERENCES

[1] J.A.Bondy and U.S.R.Murthy, "Graph Theory and Applications" (North-Holland), Newyork, 1976.
[2] To Dretskyetal "on Vertex Prime labeling of graphs in graph theory", Combinatories and applications vol. 1 J.Alari (Wiley. N.Y.) pp 299-359, 1991.
[3] H.C. Fu and K.C.Huany "on Prime labeling Discrete Math", 127 pp 181-186, 1994
[4] Gallian J. A, "A dynamic survey of graph labeling", The Electronic Journal of Combinations 16 \# DS6, 2009.
[5] S.M.lee, L.Wui and J.Yen "on the amalgamation of Prime graphs Bull", Malaysian Math.Soc.(Second Series) 11, pp 59- 67, 1988.
[6] S. Meena and K. Vaithilingam, "Prime labeling for some helm related graphs", International Journal of Innovative Research in Science, Engineering and Technology vol.2,Issue 4,April 2013.
[7] A.Tout A.N.Dabboucy and K.Howalla "Prime labeling of graphs". Nat. Acad. Sci letters 11 pp 365-368, 1982.
[8] S.K.Vaidya and K.K.Kanmani "Prime labeling for some cycle related graphs", Journal of Mathematics Research, vol.2. No.2.pp 98-104, May 2010.
[9] S.K.Vaidya and Udayan M.Prajapati "Some new results on prime graph", Open Journal of Discrete Mathematics (2012 P 99-104).
[10] R. Vasuki and A. Nagarajan" Some Results on Super Mean Graphs", International J.Math. Combin. Vol. 3 (2009), 82-96.

